
A Comparison of Plausibility Conflict and of
Conflict Based on Amount of Uncertainty of

Belief Functions
.

(A draft of a technical report)

Milan Daniel⋆⋆

Institute of Computer Science, Academy of Sciences of the Czech Republic
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Abstract. When combining belief functions by conjunctive rules of com-
bination, conflicts often appear, which are assigned to ∅ by un-normalized
conjunctive rule ∩⃝ or normalized by Dempster’s rule of combination ⊕
in Dempster-Shafer theory. Combination of conflicting belief functions
and interpretation of conflicts is often questionable in real applications,
thus a series of alternative combination rules was suggested and a series
of papers on conflicting belief functions was published.
This theoretical contribution presents one of the perspective recent ap-
proaches — authors’s plausibility conflict — and Harmanec’s approach
which is, unfortunately, aside the recent interest: conflict based on uncer-
tainty measure and Dempster’s rule. Both the approaches are analysed
and compared here.
As the approaches are based on completely different assumptions, some
of their properties are very different almost counter-intuitive for the first
view; on the other hand, the approaches have some analogous properties,
which differs both of them from the other commonly used approaches to
conflict between belief functions.

Keywords: belief function, Dempster-Shafer theory, uncertainty, inter-
nal conflict, conflict between belief functions.

1 INTRODUCTION

Belief functions are one of the widely used formalisms for uncertainty represen-
tation and processing that enable representation of incomplete and uncertain
knowledge, belief updating, and combination of evidence. They present a prin-
cipal notion of the Dempster-Shafer Theory or the Theory of Evidence [26].

⋆⋆ Later update will be accessible on http://www.cs.cas.cz/∼milan.
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When combining belief functions (BFs) by the conjunctive rules of combina-
tion, conflicts often appear which are assigned to ∅ by non-normalized conjunc-
tive rule ∩⃝ or normalized by Dempster’s rule of combination ⊕. Combination
of conflicting BFs and interpretation of conflicts is often questionable in real
applications, thus a series of alternative combination rules was suggested and a
series of papers on conflicting belief functions was published, e.g. [?,?,4, 6, 11, 12,
22, 23, 25, 27].

The sum of products of conflicting masses is called weight of conflict between
belief functions Bel1 and Bel2 in [26]; this interpretation is commonly used when
dealing with conflicting belief functions. Unfortunately, the name and interpre-
tation of this notion does not correctly correspond to reality. We often obtain
positive sum of conflicting belief masses even if two numerically same belief func-
tions1 are combined, see e.g. examples discussed by Almond [1] already in 1995
and by W. Liu [22] in 2006, for another examples see [6].

Liu further correctly demonstrates [22] that neither distance nor difference
are adequate measures of conflicts between BFs. Thus she uses a two-dimensional
(composed) measure degree of conflict cf(m1,m2) = (m ∩⃝(∅), difBetm2

m1
) Liu

puts together two previous measures of conflict, which are non-adequate sepa-
rately, m ∩⃝(∅) and a distance together as two components of a new measure of
conflict between BFs cf ; unfortunately this does not capture a nature of con-
flictness / non-conflictness between BFs.

New important and progressive idea comes from athor’s [6]. Internal conflicts
IntC(mi) which are included in particular individual BFs are distinguished from
conflict between BFs C(m1,m2) in [6]; the entire sum of conflicting masses is
called total conflict there; and three approaches to conflicts were introduced:
combinational, plausibility and comparative. In this study, we will discuss the
most elaborated and most prospective of the three approaches — the plausibility
conflict, see also ??.

An internal conflict of a BF is a conflict included inside an individual BF.
BF is non-conflicting if it is consistent (it has no internal conflict) otherwise it
is internally conflicting. A conflict between BFs is a conflict between opinions of
believers which are expressed by the BFs (the individual attitudes of believers;
particular BFs may be internally conflicting or non-conflicting). If there is a pos-
itive conflict between BFs, we simply say that the BFs are mutually conflicting;
otherwise they are mutually non-conflicting, i.e., there is no conflict between
them.

Analogously to the original m ∩⃝(∅) and cf , three approaches from [6], in-
cluding the plausibility conflict (Def. 1 and 2), seem to be rather empirical. For
introductive axiomatic studies of conflicts between BFs see [12] and [23], un-
fortunately these studies do not yet capture a real nature of conflict, as e.g.
Martin adds a non-correctly presented or ad-hoc strong axiom of inclusion [23]
and proposes an inclusion-weighted distance as a measure of conflict. Hence, this

1 All BFs combined by ⊕ and ∩⃝ are assumed to be mutually independent, even if they
are numerically same.
m(∅) is called autoconflict when numerically same belief functions are combined [23].
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interesting and complex topic is still open for discussion and further develop-
ment. The important ideas from [12] and [23] should be studied and elaborated
together with those from [6].

Unfortunately all the above approaches to conflict of belief functions ignore
Harmanec’s conflict between BFs which is based on measure of uncertainty and
Dempster’s rule [17] comming from theory of information. As Harmanec’s ap-
proach is out of the scope of the above mentioned work on conflicts; and despite
the complete different foundation it has some features common with the plausi-
bility conflict. We will analyze it and compare with plausibility conflict here.

2 PRELIMINARIES

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from theory of belief functions [26].
on finite frames of discernment Ωn = {ω1, ω2, ..., ωn}, see also ... .

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such
that

∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses

(bbm). m(∅) = 0 is usually assumed. A belief function (BF) is a mapping
Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅≠X⊆A m(X). A plausibility function Pl(A) =∑

∅≠A∩X m(X). There is a unique correspondence among m and corresponding
Bel and Pl thus we often speak about m as of belief function.

A focal element is a subset X of the frame of discernment, such that m(X) >
0. If all the focal elements are singletons (i.e. one-element subsets of Ω), then
we speak about a Bayesian belief function (BBF); in fact, it is a probability
distribution on Ω. In the case of m(Ω) = 1 we speak about vacuous BF (VBF).

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕m2)(A) =∑
X∩Y=A Km1(X)m2(Y ) forA ̸= ∅, whereK= 1

1−κ , κ=
∑

X∩Y=∅ m1(X)m2(Y ),
and (m1 ⊕m2)(∅) = 0, see [26]; if κ > 0 then we say that m1 and m2 are com-
binable (by Dempster’s rule), see [17]. Putting K = 1 and (m1 ⊕m2)(∅) = κ we
obtain the non-normalized conjunctive rule of combination ∩⃝ , see e. g. [?].

Normalized plausibility of singletons2 of Bel is BBF such that Pl({ωi})∑
ω∈Ω Pl({ω}) ;

the formula is also used as definition of probability transformation Pl P of BF

Bel: (Pl P (Bel))(ωi) =
Pl({ωi})∑

ω∈Ω Pl({ω}) [2, 5].

2.2 Belief Functions on two-element frame of Discernment

Our analysis of conflicts is motivated by Hájek-Valdés algebraic analysis of BFs
on 2-element frame Ω2 = {ω1, ω2} [15, 16], further elaborated by the author of
this study, e.g. in [3, ?]. Thus we present some of related notions which are used
here.

There are only three possible focal elements {ω1}, {ω2}, {ω1, ω2} and any
normalized basic belief assignment (bba)m is defined by a pair (a, b) = (m({ω1}),
2 Plausibility of singletons is called contour function by Shafer in [26], thus Pl P (Bel)
is a normalization of contour function in fact.
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m({ω2})) as m({ω1, ω2}) = 1 − a − b; this is called Dempster’s pair or simply
d-pair in [3, ?,15, 16] (it is a pair of reals such that 0 ≤ a, b ≤ 1, a+ b ≤ 1)3.

Extremal d-pairs are the pairs corresponding to BFs for which either m({ω1})
= 1 or m({ω2}) = 1, i.e., (1, 0) and (0, 1). The set of all non-extremal d-pairs is
denoted as D0; the set of all non-extremal Bayesian d-pairs (i.e. d-pairs corre-
sponding to Bayesian BFs, where a+ b = 1) is denoted as G; the set of d-pairs
such that a = b is denoted as S, the set where b = 0 as S1, analogically the set
where a = 0 as S2 (simple support BFs). Vacuous BF is denoted as 0 = (0, 0) and
there is a special BF (d-pair) 0′ = ( 12 ,

1
2 ) = U2, see Figure 1. (VBF 0 is neutral

w.r.t. Dempster’s rule, i.e. for any BF Bel it holds that Bel⊕0 = Bel = 0⊕Bel;
similarly 0′ is neutral in G, i.e., (a, 1− a)⊕ 0′ = (a, 1− a) = 0′ ⊕ (a, 1− a), and
generally Bel ⊕ Un = Bel = Un ⊕Bel for any BBF Bel on Ωn).

Fig. 1. Dempster’s semigroup D0. Homomorphism h is in this representation a projec-
tion of D0 to group G along the straight lines running through the point (1, 1).

3 Analogically, we can represent any BF on Ωn as a 2n−2-tuple (a1, a2, ..., a2n−2), or as
a 2n−1-tuple (a1, a2, ..., a2n−2 ; a2n−1) if we want to underline value m(Ω) = a2n−1 .
For non-normalized BFs we can use (a1, a2, ..., a2n−2 ; a2n−1 | e), where e = m(∅).
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In D0, we need further: h(a, b) = (a, b) ⊕ 0′ = ( 1−b
2−a−b ,

1−a
2−a−b ), in general

h(Bel) = Bel⊕Un = Pl P (Bel). h is an homomorphism of the algebraic struc-
ture on D0 to G.
Let us denote D≥0

0 = {(a, b)∈D0 | (a, b)≥ 0, i.e.,a ≥ b} and analogically D≤0′
0 =

{(a, b) ∈ D0 | (a, b) ≤ 0′, i.e., a ≤ b}. And analogically subsets of G: G≤0′ and
G≥0′ ; G≤0′ = {(a, 1− a)∈D0 | (a, 1− a)≤0′, i.e., a ≤ 0.5}, G≥0′ = {(a, 1− a)∈
D0 | (a, 1− a)≥0′, i.e.,a ≥ 0.5}.

For more details and algebraic results see [3, ?,15, 16] For the first results of
generalization to Ω3 see [8].
% do TR take WUPES’12 + FSS
The situation is much more complicated there, as instead of 2-dimensional trian-
gle for Ω2 there is 6-dimensional simplex for Ω3, there are two kind of dimensions,
and adequately more complicated structures.

3 PLAUSIBILITY CONFLICT OF BELIEF
FUNCTIONS

Two BFs on a two-element frame of discernment which both support/prefer the
same element of the frame (mi(ωj} ≥ 1

2 for same ωj ∈ Ω2), i.e., both oppose
the other element (mi(ωk} ≤ 1

2 for ωj ̸= ωj ∈ Ω2), are assumed to be mutually
non-conflicting in [6] (there is no conflict between them); otherwise they are
mutually conflicting. A generalization of this idea follows.

3.1 Internal Plausibility Conflict

Definition 1. The internal plausibility conflict Pl-IntC of BF Bel on a general
frame of discernment Ω is defined as

Pl-IntC(Bel) = 1−maxω∈ΩPl({ω}),

where Pl is the plausibility corresponding to Bel.

Let us present the plausibility internal conflict on n-element frame of dis-
cernment Ωn. 0

′
n = ( 1n ,

1
2 , ...,

1
n , 0, 0, ..., 0) = Un has maximal internal conflict:

Pl-IntC(Un) = n−1
n , whereas categorical BFs, simple support BFs, consosant

and any consistent BFs have no (i.e., zero) internal conflict Pl-IntC.
Situation of a special case of plausibility internal conflict of BFs on Ω2 is

graphically presented in Figure 2. The directions of the arrows show the direc-
tions in which internal conflict decreases. A lines without arrows along S1 and
S2 represent constant (zero) internal conflict of BFs from these subsemigroups,
dashed lines represent positive constant internal conflict.

3.2 Plausibility Conflict between Belief Functions

Definition 2. The conflicting set ΩPlC(Bel1, Bel2) is defined as the set of el-
ements ω ∈ Ωn with conflicting Pl P masses, i.e., ΩPlC(Bel1, Bel2) = {ω ∈
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Fig. 2. Plausibility internal conflict

Ωn | (Pl P (Bel1)(ω)− 1
n )(Pl P (Bel2)(ω)− 1

n ) < 0}.
Plausibility conflict between BFs Bel1 and Bel2 is then defined by the formula

Pl-C(Bel1, Bel2) =

min(Pl-C0(Bel1, Bel2), (m1 ∩⃝m2)(∅) ),
where4

Pl-C0(Bel1, Bel2) =∑
ω∈ΩPlC(Bel1,Bel2)

1

2
|Pl P (Bel1)(ω)− Pl P (Bel2)(ω)|.

If (Pl P (Bel1)(ωi) − 1
n )(Pl P (Bel2)(ωi) − 1

n ) ≥ 0 for all ωi ∈ Ωn, i.e.,
ΩPlC(Bel1, Bel2) = ∅ 5, then BFs Bel1 and Bel2 on Ωn are mutually non-
conflicting. The reverse statement does not hold true for n > 2, see e.g. Example
1. Any two BFs (m1({ω1}),m1({ω2})) = (a, b) and (m2({ω1}),m2({ω2})) =
(c, d) on Ω2 are mutually non-conflicting iff (a− b)(c− d) ≥ 0.

Contrary to the use of m ∩⃝(∅), degree of conflict cf or measures of conflict
based on a distance, when using the plausibility conflict, two BFs which accord-
ingly support/oppose same elements of a frame of discernment with a different
degree of support/opposition are not misclassified as being in mutual conflict.

Example 1. Let us suppose Ω6, now; and two intuitively non-conflicting BFs
m1 and m2.

X : {ω1} . . . {ω1, ω2, ω3, ω4}

m1(X) : 1.00
m2(X) : 1.00

Pl P (m1) = (1.00, 0.00, 0.00, 0.00, 0.00, 0.00),

4 Pl-C0 is not a separate measure of conflict in general; it is just a component of Pl-C.
5 For improvement of a construction of ΩPlC(Bel1, Bel2) for more complicated situa-
tions see [10];



A Comparison of Conflicts between Belief Functions 7

Pl P (m2) = (0.25, 0.25, 0.25, 0.25, 0.00, 0.00), (we mean Pl P (Beli) for Beli cor-
responding tomi), ΩPlC(mi,mj) = {ω2, ω3, ω4}, as Pl P (m2)(ωi)=

1
4 >

1
6 for i=

2, 3, 4, whereas Pl P (m1)(ωi) = 0 < 1
6 for i = 2, 3, 4, (the other elements are non-

conflicting: Pl P (m1)(ω1) = 1 > 1
6 , Pl P (m2)(ω1) = 1

4 > 1
6 , Pl P (m1)(ωi) =

0 = Pl P (m2)(ωi) for i = 5, 6; Pl-C(m1,m2) = min(0.375, 0.00) = 0.00.

Fig. 3. Plausibility conflict between fixed BF (u, v) and general BF (a, b) on Ω2; Pl-C
decreases in direction of arrows and it is constant along lines without arrows.

Plausibility conflict between fixed (u, v) on Ω2 and free (a, b) is presented on
Figure 3. There is no plausibility conflict between (u, v) and any BF (a, b) such
that (u−v)(a−b) ≥ 0, i.e., when (a, b) is in the same subsemigroup D≥0

0 or D≤0′
0

as (u, v) is, (see the white area on Figure 3). On the other hand, there is positive
plausibility conflict between (u, v) and any BF (a, b) such that (u−v)(a− c) < 0
(see the grey area). Pl P (u, v) = h(u, v) = ( 1−v

2−u−v ,
1−u

2−u−v ), similarly for (a, b),

BFs are plausibility non-conflicting if and only if (12 −h1(u, v))(
1
2 −h1(a, b)) ≥ 0,

thus iff (u− v)(a− b) ≥ 0.
Plausibility conflict between (u, v) and (a, b) increases from | 12 − 1−u

2−u−v | to
| 12 − 1−u

2−u−v | +
1
2 for any BFs from G,Si; in detail from ϵ surrounding of 0′

to the corresponding conflicting extremal BF in G, respectively from ϵ sur-
rounding of 0 to the corresponding conflicting extremal BFs in S′

is. Similarly,
Pl-C((u, v), (a, b)) increases for BFs on h-lines closer to the corresponding con-
flicting extremal element, while conflict between (u, v) and (a, b) is same for
all BFs laying on the same h-line, see Figure 3, arrows represent decreasing of
conflicts between (a, b) and (u, v), in the grey area (D≤0

0 ) which contains BFs
conflicting with given (u, v).

Plausibility conflict between general BFs Bel and a given BelUV on Ωn

increases from Pl-C(BelUV , Un) to Pl-C(BelUV , Un) +
n−1
n for any BFs from

ϵ surroundings of 0, Un and indecisive BFs to the corresponding conflicting
categorical BF. Pl-C(Bel,BelUV ) is constant for all BFs with the same h(Bel).
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4 CONFLICT BETWEEN BELIEF FUNCTIONS
BASED ON UNCERTAINTY AND THE DEMPSTER
RULE

In this section we will recall the measure of uncertainty for Dempster-Shafer
theory justified by Harmanec and Klir in [18], for its efficient algorithm see [19],
relation of this measure to the Dempster rule and the measure of the conflict
between belief functions based on the uncertainty and the Dempster rule [17].

4.1 A Relation of Uncertainty and the Dempster Rule

Definition 3. Let Bel denote a belief function defined on a general frame of dis-
cernment Ω. A measure of the amount of uncertainty contained in Bel, denoted
as AU(Bel), is defined by

AU(Bel) = max

{
−

∑
ω∈Ω

pω log2 pω

}
,

where the maximum is taken over all {pω}ω∈Ω such that pω ∈ [0, 1] for all ω ∈ Ω,∑
ω∈Ω pω = 1, and for all A ⊆ Ω, Bel(A) ≤

∑
ω∈A pω.

For comparison of both the presented approaches to conflict, the following
necessary and sufficient condition for no increase of uncertainty after Dempster’s
combination on a two-element frame of discernment is useful.

Theorem 1. Let us suppose two combinable belief functions Bel1 and Bel2 on
a two-element frame of discernment Ω2 = {ω1, ω2}, given by d-pairs (a1, b1) and
(a2, b2); assume further a1 ≥ b1, i.e., (a1, b2) ≥ 0. Then

AU(Bel1 ⊕Bel2) ≤ min(AU(Bel1), AU(Bel2))

if and only if at least one of the following holds
(i) 0 ≤ a1, a2, b2 ≤ 1

2 , (i.e. also 0 ≤ b1 ≤ 1
2); (see Fig. 6)

(ii) a2 ≥ b2; (see Fig. 5)
(iii) a2 < b2, (1− b1)(1− b2) ≥ (1− a1)(1− a2),

a2(1− b1) ≥ a1b2,
(1− b2)(1− a1b2 − b1a2) ≥ (1− a1)(1− a2); or

(iv) a2 < b2, (1− b1)(1− b2) < (1− a1)(1− a2),
b1(1− a2) ≥ a1b2,
(1− a1)(1− a1b2 − b1a2) ≥ (1− b1)(1− b2).

For proof see [17]. An analogous but more complicated necessary and suffi-
cient conditions for three-element frames of discernment are mentioned, but not
presented there.
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4.2 Harmanec’s Conflict between Belief Functions

Hamanec’s definition of conflict between belief functions is motivated by the
above presented quite complex (and not easy to grasp) relation between uncer-
tainty and the Dempster’s rule. Harmanec uses the increase of uncertainty as
the defining property of conflict between bodies of evidence.

Definition 4. Let Bel1 and Bel2 denote combinable belief functions on Ω.

We define the degree of conflict of Bel1 and Bel2 denoted C(Bel1, Bel2), by

C(Bel1, Bel2) =

max (0, AU(Bel1 ⊕Bel2)−miniAU(Beli)) .

That is the degree of conflict is equal to the amount of uncertainty gained
(or, equivalently, the amount of information lost6) by Dempster’s combination
Bel1 ⊕ Bel2 (a conflict C(Bel1, Bel2, ..., Beln) of n belief functions is defined
analogously).

5 A COMPARISON OF THE APROACHES

5.1 Uncertainty and Internal Conflict

Unlike authorl’s approach, there is no internal conflict specified in Harmanec’s
approach. On the other hand, there is uncertainty of individual beliefs Bel1
and Bel2, uncertainty of their combination Bel1 ⊕ Bel2, and conflict between
Bel1 and Bel2. Thus there is some kind of analogy of both the approaches:
where AU(Beli) is analogous to internal conflict of Beli, i.e. to IntC(Beli) and
AU(Bel1 ⊕Bel2) is analogous to total conflict of Bel1 and Bel2, which is equal
to totC(Bel1, Bel2) = (m1 ∩⃝m2)(∅). Moreover Harmanec’s conflict is computed
using AU , thus this seem useful to compare AU(Bel) with Pl-IntC(Bel).

We can demonstrate the two-element case of AU(Bel) on Figure 4. For Bay-
seian BFs it is really analogous to Pl-IntC(Bel), AU is maximal for 0′ = U2

(AU(U2) = 1 = log2 n = log2 2) and it decreases to 0 towards both (0, 1) and
(1, 0). On the other hand AU(Bel) is completely different for Bel = (s, s) ∈ S,
it is not decreasing towards VBF 0 = (0, 0), but constant AU(Bel) = 1 for all
Bel ∈ S. VBF is completely without any internal conflict, but it has maximal
uncertainty AU(V BF ) = 1. Non-analogous are also all simple (support) BFs
(a, 0) ∈ S1 and (0, b) ∈ S2, they are decreasing to 0 with increasing a (with
increasing b), but Pl-IntC(a, 0) = Pl-IntC(0, b) are constantly equal to 0. Sub-
sequently for a > 1

2 , a > b, AU(a, b) decreases towards right along horizontal
lines parallel with S1 and they are constant on vertical lines parallel with S2,
what is conversely for Pl-IntC(a, b). Analogously, but conversely for a < b,
b > 1

2 . Big difference is also maximal uncertainty AU(a, b) = 1 for all BFs such
that 0 ≤ a, b ≤ 1

2 .

6 The information gain G(Bel1, Bel2) is defined dually in (Harmanec, 1997).



10 M. Daniel

Fig. 4. Uncertainty AU(Bel) of Bel = (a, b) on Ω2.; uncertainty decreases in direction
of arrows; it is constant along the lines without arrows.

Let us turn our attention to a general n-element case (BFs on a n-element
frame of discernment Ωn) now. In the case of Bayesian BFs, AU is maximal
for Un (AU(Un) = log2 n) and it decreases towards categorical Bayesian BFs
(m(ωi) = 1 for some ωi ∈ Ωn). For general BFs, AU is maximal for all symmetric
BFs, for all qBBFs such that m(ωi) ≤ 1

n , and for some other BFs (it is not easy
to explicitly enumerate all of these BFs with uncertainty equal to log2 n); and
AU decreases towards categorical BFs with singleton focal element. Note that
AU(BelC2) = 1, for a categorical BF with two-element focal element, for any
frame of discernment.

Thus the analogy of AU(Bel) and Pl-IntC(Bel) is very weak in general.

5.2 Analysis of Conflict between BFs on Ω2

Let us turn our attention to conflict between belief functions now. We will start
with mutual conflictness / non-conflictness of two BFs on two-element frame Ω2.

This question is very easy in the case of plausibility conflict Pl-C. Two
BFs Beli = (ai, bi) on Ω2 are mutually non-conflicting, i.e., there is no conflict
between them if and only if, both of them support same ωi and both of them
oppose the other element of Ω2 thus if and only if ai ≥ bi for i = 1, 2 or ai ≤ bi
for i = 1, 2. I.e., if both of Beli are in grey part of the triangle on Figure 5 or both
of them are in white part of the triangle. The BFs are mutually conflicting (there
is some positive conflict between them) if one of the BFs is in white part and
the other in grey part, i.e., if and only if a1 > b1 & a2 < b2 or a1 < b1 & a2 > b2.

In the case of Harmanec’s conflict, we see (from Definition 4) that Beli are
mutually non-conflicting, i.e., there is no (zero) Harmanec’s conflict betweenBel1
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Fig. 5. Belief functions on Ω2: a ≥ b,
Bel({ω1}) ≥ Bel({ω2}).

Fig. 6. Belief functions on Ω2: 0 ≤ a, b ≤
1
2
, 0 ≤ Bel({ω1}), Bel({ω2})≤ 1

2
.

and Bel2 if and only if AU(Bel1⊕Bel2) ≤ AU(Bel1), AU(Bel2), i.e., if and only
if the condition from Theorem 1 is satisfied or if and only if dual condition is
satisfied in the case that a1 ≤ b1 holds true. Subcondition (i) says that both BFs
are in a/the grey square on Figure 6, subcondition (ii) says that both BFs are
in the grey triangle on Figure 5, while its dual subcondition says that both BFs
are in the white triangle on the figure (when a1 ≤ b1 holds true). Subconditions
(iii) and (iv) are more complicated, to be simply displayed on figures, each of
both subconditions is again composed from several simpler conditions in fact.
Even from this partial analysis of Harmanec’s condition, we can see that for any
pair of BFs with zero plausibility conflict there is no (zero) Harmanec’s conflict.
Thus we have proven the following theorem.

Theorem 2. Let us suppose two combinable belief functions Bel1 and Bel2 on
a two-element frame of discernment Ω2 = {ω1, ω2}, given by d-pairs (a1, b1) and
(a2, b2). If Pl-C(Bel1, Bel2) = 0 then also C(Bel1, Bel2) = 0.

6.2.1 Conflict between a free (a, b) and a fixed Bayesian (u, 1 − u)

Look at an analysis of Harmanec’s conflict C((a, b), (u, v)) analogous to the anal-
ysis of Pl-C((a, b), (u, v)) in Section 3. As the formula (and procedure) for com-
putation of C((a, b), (u, v)) is significantly more complicated, we will start with
a simplified but important case of Bayesian (u, v). Thus we are interesting in
conflict between (a, b) and (u, 1− u) for fixed (u, 1− u).

For a special case of Bayesian BF 0′ = U2 = ( 12 ,
1
2 ) we have the following

lemma.

Lemma 1. U2 = ( 12 ,
1
2 ) is non-conflicting with any belief functions on two-

element frame of discernment, i.e.. for any Bel on Ω2 it holds that C(Bel, U2) =
0.
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Proof. Proof is a verification of the statement, based on the fact that Bel ⊕
U2 = Pl P (Bel) Thus (a, b) ⊕ U2 lies between (a, 1 − a) and (b, 1 − b) and has
less uncertainty than (a, b) has. �.

Let us suppose u > 1
2 , v = 1−u, now, see Figure 7. If a ≥ b then AU((a, b)⊕

(u, 1− u) ≤ AU(a, b), AU(u, 1− u) according to subcondition (i) from Theorem
1, hence C((a, b), (u, 1− u)) = 0. The subcondition (ii) is not relevant as u > 1

2
now. Maximal uncertainty AU(⊕) = 1 (read: AU((a, b)⊕ (u, 1−u) = 1) appears
for (a, b) = (1− u, u) and for all BFs lying on the same h-line as (1− u, u), i.e.
such that Pl P (a, b) = (1− u, u).

Fig. 7. Harmanec’s conflict C((a, b),
(u, 1− u)) for u > 0.618.

Fig. 8. *** modified Figure for u
.
= 0.6 in

preparation ***

C((a, 1− a), (u, 1− u)):
Let assume b = 1 − a for a moment: AU(⊕) increases for a decreasing from 1

2
to 1 − u, AU(a, 1 − a) ≥ AU(u, 1 − u) there (for a ∈ [1 − u, 1

2 ]), thus conflict
C((a, 1−a), (u, 1−u)) = AU(⊕)−AU(u, 1−u) increases with uncertainty from
0 for a decreasing from 1

2 to 1 − u. For a ≤ 1 − u, C((a, 1 − a), (u, 1 − u)) =
AU(⊕)−AU(a, 1−a), both AU(⊕) and AU(a, 1−a) decrease there, AU(a, 1−a)
decreases more when closer to (1 − u, u) thus the conflict still increases till its
maximum for (am, 1 − am), 0 < am < 1 − u. Further it decreases till zero for
a = 0. We can show that the conflict is positive for any a > 0: (a, 1 − a) ⊕
(u, 1 − u) = ( au

1−a−u+2au ,
(1−a)(1−u)
1−a−u+2au ),

au
1−a−u+2au ≤ a (eq. for a = 0), thus

AU(⊕) ≤ AU(a, 1− a), where equality holds for a = 0 in our range (a ≤ 1− u);
thus conflict is positive for a > 0. This is represented by arrows from (am, 1−am)
to (0, 1) and to U2 in Figure 7.

C((a, b), (u, 1− u)) for a < b, b ≤ u:
In this case AU(u, 1 − u) ≤ AU(a, b), thus C((a, b), (u, 1 − u)) = AU(⊕) −
AU(u, 1−u) now. We subtract fixed uncertainty (of fixed (u, 1−u)), thus conflict
is constant for all BFs on the same h-line analogously to the case of h-line
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containing (am, 1−am). This is represented by lines without arrows in directions
of h-lines. The conflict is decreasing for h-lines closer to S, this is illustrated by
an arrow intersecting h-lines without arrows.

C((a, b), (u, 1− u)) for a < b, b ≥ u:
In this case AU(a, b) ≤ AU(u, 1 − u), thus C((a, b), (u, 1 − u)) = AU(⊕) −
AU(a, b) now. This case is analogous to the previous, but the uncertainty which
is decreased is not constant, it is increasing with with decreasing b. Thus neither
conflict on a h-line is not constant but decreasing with decreasing b. This is
represented by arrow in directions of h-lines. The conflict is further decreasing
from h-line containing (am, 1−am) toward (0, 1), this is represented by an arrow
there.

C((0, b), (u, 1− u)):
For b ≤ u the situation is easy, fully described above. The conflict C((0, b), (u, 1−
u)) is the same as on the h-line intersecting the triangle in (0, b). Thus it decreases
from the intersection of the triangle with h-line containing (am, 1 − am) both
toward 0 = (0, 0) and toward (0, 1), see arrows on the figure.
The situation is more complicated for b ≥ u, the conflict is decreasing along
h-lines. Can the conflict decrease to zero? The answer depends from the specific
value of u. It is possible to show that for u > 1

2 (
√
5− 1)

.
= 0.618034 the conflict

is always positive. On the other side it can decrease to zero for u < 0.618; the
subcondition (iv) from Theorem 1 is satisfied there7. We need a modified figure,
see Figure 8, containing this non-conflicting area, for 1

2 < u < 0.614.

6.2.2 Conflict between a free (a, b) and a fixed general (u, v)

Let us start with a special case again. The following generalization of Lemma
1 holds true:

Lemma 2. Any symmetric belief function Sym = (s, s) is non-conflicting with
any other belief function on two-element frame of discernment, i.e.. for any Bel
and any symmetric BF Sym both on Ω2 it holds that C(Bel, Sym) = 0.

Proof. We can make a more complicated analogy of the previous proof; or
less ellegantly but simply apply subconditions (i) and (ii) from Theorem 1 (this
is also an alternative proof of Lemma 1). �.

Let us assume that u > v, see Figure 9 now. We can proceed analogously
to the previous case of (u, 1 − u). But the situation is more complicated. In
Dempster’s combination Pl P (u, v) plays principal role, whereas at AU(u, v)
directly u plays principal role, hence there is more important points in the figure.
And the behaviour of conflict is correspondingly more complicated.

7 Satisfying subconditions from from Theorem 1: subcondition (i) is satisfied for (a ≥
b), subcondition (ii) can be satisfied only in the special case (u, 1−u) = U2 in the case
of fixed Bayesian (u, 1−u), subcondition (iv) can be satisfied only in case u ≤ 0.618,
subcondition (iii) is not satisfied or it is covered by the other subconditions.
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Fig. 9. Harmanec’s conflict C((a, b), (u, v)).

C((a, 1− a), (u, v)):
Analogously to the previous case we have maximal AU(⊕) (read as AU((a, 1−
a) ⊕ (u, v)) now) for (v, u) and PlP (v, u). And maximal conflict for (am, 1 −
am, such that 0 < am < 1−u

2−u−v , where Pl P (u, v) = ( 1−v
2−u−v ,

1−u
2−u−v ). The

difference from the previous case is close to U2: AU(⊕) fall between (u, 1 − u)

and Pl P (u, v) for u(1−u)
1−v+uv−u2 ≤ a ≤ 1

2 , thus there is no conflict for (a0, 1−a0) =

( u(1−u)
1−v+uv−u2 ,

(1−u)(1−v)
1−v+uv−u2 ) and all Bayesian (a, 1−a) between (a0, 1−a0) and U2.

Sequently there is no conflict either for BFs in corresponding surrounding of S.
The subcondition (iii) from Theorem 1 is satisfied here.

C((a, b), (u, v)):
The rest is analogous to the case of (u, 1− u).

C((0, b), (u, v)):
In this case, we can show that C((0, b), (u, v)) is positive even in closer neigh-
bourhood of (0, 0), that the area of satisfaction of the subcondition (iii) narrows
to a single point containing vacuous BF 0 = (0, 0). An analogously to the previ-
ous case, that (0, b) is always conflicting with (u, v) for greater u, see Figure 9,
i.e. subcondition (iv) cannot be satisfied. And that there appears non-conflicting
BFs around (0, b) closer to (0, 1) for (u, v) closer to U2 and to non-conflicting
area corresponding to subcondition (i). To capture this we need a modified figure
again. (An alternative figure is under development).

We have already seen, that any two Pl-C non-conflicting belief functions
on Ω2 are also C non-conflicting. After the detail analysis of C this seems very
obvious. Using the previous analysis we can show that a stronger statement holds
true:
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Theorem 3. Let us suppose two combinable belief functions Bel1 and Bel2
given by d-pairs (a1, b1) and (a2, b2) on a two-element frame of discernment
Ω2 = {ω1, ω2}. It holds that

C((a1, b1), (a2, b2)) ≤ Pl-C((a1, b1), (a2, b2)).

Proof. The proof is just a verification of the statement for a pairs of Bayesian
BFs. Pl-C is the same for any couple on a same couple of h-lines. Whereas C
is either same or less leaving the Bayesian BFs, thus the property is kept or
strenghtened leaving Bayesian BFs. �.

5.3 A Discusion of Harmanec’s Conflict and a Comparison of the
Approaches on a General Finite Frame of Discernment

Let us outline an analysis of the Harmanec’s conflict between BFs on gen-
eral finite Ωn in this subsection. Let us start with Bayesian BFs again. Un =
( 1n ,

1
n , ...,

1
n ) is due to its neutrality w.r.t. to Demspter’s combination is non-

conflicting with any of the other Bayesian again. Let us start with a fixed Belu
and a variable Bela Bayesian BFs again; analogously to d-pairs we can represent
them by n-tuples of m-values of their singletons m({ωi}) :Belu = (u1, u2, ..., un),
where

∑
i ui = 1. If Bela = (a1, a2, ...., an) have the same order of focal element

with respect to size of its m-values the uncertainty decreases during ⊕ combina-
tion, thus BFs are non-conflicting. Similar situation appears when max m-value
is assigned to same singletons. On the other side the maximal uncertainty of
AU(⊕) (read AU(Bela ⊕ Belu) now) is obtained for unique (a1, a2, ...., an) =
−(u1, u2, ..., un), such that (a1, a2, ...., an) ⊕ −(u1, u2, ..., un) = Un; for unique-
ness of this value see [7]. Analogously to Ω2 conflict increases from Un to
−(u1, u2, ..., un) and further to belief function(s) Belm which is (are) behind
−(u1, u2, ..., un). Conflict further decreases to BBFs with less focal elements,
finally to 0 for all categorical BBFs (some of ai is equal to 1).

A situation starts to be complicated when Bela leaves BBFs (when it has
also non-singleton focal elements), conflict is constant on h-lines (set of BFs
with same Pl P (Bel)) or decreases with increase of AU(Bela) depending from
comparison of AU(Bela) and AU(Belu) in the previous case of Ω2. On Ωn, we
have many-dimensional structure of {Bel | Bel⊕Un = Pl P (Bela) = Bela ⊕
Un} instead of one-dimensional h-lines. For an introduction on algebra of belief
functions on Ω3 see [8]. The problem is that AU is not always increasing leaving
Bayesian BFs in these structures thus conflict does not need to decrease there.
Thus we need to distinguish between qBBFs and general BFs, as for qBBFs there
are one-dimensional h-lines analogous to the case of Ω2; h-lines are straight lines
going through the point (1, 1, ..., 1) of n-dimensional space now.

6.3.1 Harmanec’s Conflict and its Comparison to Plausibility Conflict
on Quasi-Bayesian Belief Functions on Ωn.

Analogously to the simplest case of Ω2, where are only qBBFs, we can use h-
lines defined by homomorpism h again. Similarly to Ω2, AU decreases along
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h-lines in direction to BBFs as less and less iso-AU levels are crossed in this
direction, analogously to Figure ??. On the other side Harmanec’s conflict C is
again constant along h-lines or it increases towards Bayesian BFs. Thus we can
relatively simply generalize the previous results.

Theorem 4. Any symmetric quasi-Bayesian belief function BelS = (s, s, ...s) is
non-conflicting with any other belief function on a general frame of discernment
Ωn, i.e.. for any Bel and any symmetric BF BelS both on Ωn it holds that
C(Bel,BelS) = 0. Specially, it holds C(Bel, Un) = 0.

Proof. AU(BelS) = AU(Un) = log2n, i.e. max possible uncertainty on Ωn,
AU(Bel ⊕ BelS) and AU(Bel) lay on the same h-line thus AU(Bel ⊕ BelS) ≤
AU(Bel), hence C(Bel,BelS) = 0. For combinability see [17]. �.

Theorem 5. (Categorical singletons) Let Belω be a categorical singleton, i.e.,
belief function such that mω({ω}) = 1 for some ω ∈Ωn and mω({ω′}) = 0 for
ω ̸= ω′ ∈Ωn and Bel be any quasi-Bayesian BF on Ωn combinable with Belω.
It hold that C(Bel,Belω) = 0.

Proof. It holds that Belω ⊕Bel = Belω (in combinable case), thus AU(Belω ⊕
Bel) = AU(Belω) = 0. Hence also C(Bel,Belω) = 0. �.

Note that C(Bel,Belω) is not defined for Bel which core does not include ω
because Belω ⊕Bel is not defined there. From the same reason C(Bel1, Bel2) is
not deifined either for any pair of BFs with disjunctive cores (C)1 ∩ (C)2 = ∅.
Hence full/total conflict is not defined by Harmanec degree of conflict C.

Analysing situations analogous to those decribed for Ω2, see Figures 7 — 8
we obtain:

Theorem 6. (max C) Let Belu be a fixed quasi-Bayesian belief function on Ωn

and Bel any qBBF on Ωn combinable with Bel. Maximal C(Bel,Belu) appears
for a Bayesian BF Belm, which lies between BBF −h(Belu) and border of n− 1
dimensional simplex of BBFs in the directions opposite to the direction to BBF
h(Bel). C decreases from Belm in any direction.

Proof. (to be typed)

Theorem 7. Let us suppose two combinable quasi-Bayesian belief functions
Bel1 and Bel2 on a general frame of discernment Ωn. If Pl-C(Bel1, Bel2) = 0
then also C(Bel1, Bel2) = 0.

Proof. (to be typed)

Hypothesis 1 Let us suppose two combinable quasi-Bayesian belief functions
Bel1 and Bel2 on Ωn. It holds that

C(Bel1, Bel2) ≤ Pl-C(Bel1, Bel2).
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6.3.2 A Comparison of the Approaches for General Belief Functions.

Because proof of Theorem 5 holds for any BF Bel we can simply formulate it
also for general BFs.

Theorem 8. (categorical singleton) Let Belω be a categorical singleton, i.e.,
belief function such that mω({ω}) = 1 for some ω ∈Ωn and and mω(X) = 0 for
{ω} ̸= X ⊂ Ωn and Bel be any BF on Ωn combinable with Belω. It hold that
C(Bel,Belω) = 0.

Nevertheless, situation is much more complicated for general belief functions,
as there are multi-dimensional structures instead of one-dimensional h-lines on
Ωn.

Due to this, we can observe a difference in common properties of conflicts
between belief functions which are not quasi Bayesian. Thus a symmetric BF
BelS (even Un) is not non-conflicting with with any BF in general. Thus we have
not a simple generalization of Theorems 7 and 3, because, e.g., there is always
Pl-C(Bel,BelS) = 0, but there are situations for which C(Bel1, Bel2) > 0 thus
� Pl-C(Bel,BelS). See following examples:

Example 1. Letm1({ω1}) = 1
2 ,m1(ω2, ω3}) = 1

2 ;Bel2 = ( 2
10 ,

2
10 ,

2
10 ,

1
10 ,

1
10 ,

1
10 ;

1
10 );

Bel3 = ( 16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ; 0) AU(Bel1) = − 1

2 log2
1
2−2 1

4 log2
1
4 = 1.500, AU(Bel2) =

AU(Bel3) = AU(U3) = −31
3 log2

1
3 = 1.585. Bel1⊕Bel2 = ( 4

11 ,
3
11 ,

3
11 , 0, 0,

1
10 ; 0),

AU(Bel1⊕Bel2) = − 8
22 log2

8
22−2 7

22 log2
7
22 = 1.582;Bel1⊕Bel3 = ( 38 ,

2
8 ,

2
8 , 0, 0,

1
8 ; 0),

AU(Bel1 ⊕Bel3) = − 6
16 log2

6
16 − 2 5

16 log2
5
16 = 1.579.

Thus C(Bel1, U3) = AU(Bel1 ⊕ U3) − AU(Bel1) = AU(U3) − AU(Bel1) =
0.085 > 0, C(Bel1, Bel2) = AU(Bel1⊕Bel2)−AU(Bel1) = 0.082 > 0, C(Bel1, Bel3) =
AU(Bel1 ⊕Bel3)−AU(Bel1) = 0.079 > 0.
On the other hand we have C(Bel1, V BF )AU(Bel1 ⊕ V BF ) − AU(Bel1) =
AU(Bel1)−AU(Bel1) = 0 as we expected; further for modifiedBel′1 = ( 14 , 0, 0, 0, 0,

1
14 ;

1
2 )

we obtain AU(Bel′1) = AU(U3), thus C(Bel′1, Beli) = max(0, AU(Bel′1⊕Beli)−
AU(U3) = 0 in all 3 cases.

We have examples where U3 and symmetric BFs are non-conflicting with
other BFs and also counter-examples. Thus there arise an interesting open prob-
lem to specify conditions under which assertion of Theorem 7 holds for general
BFs on general frame of discernment (as the cases where it does not hold are
exeptions which should be specified), i.e., to specify under which contidions Un,
BelS and BelSP l (and BelSBet) are non-conflicting with any others. (a gen-
eralization of Theorem 4). A special subproblem is specification under which
conditions for BelS and BelSP l holds that AU(BelS ⊕Bel) ≤ AU(Bel).

The related interesting open question is also generalization of Theorem 3
(including verification of Hypothesis 1), i.e, again a specification of conditions
under which the Theorem is generalizable.
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6 SUMMARY

We have seen that C(Beli, Belj) is a weaker measure of conflict than Pl-C(Beli, Belj)
on quasi-Bayesian BFs in the sense, that all non-conflicting couples of qBBFs
with respect to Pl-C are also non-conflicting with respect to C. Moreover we have
Hypothesis C(Beli, Belj) ≤ Pl-C(Beli, Belj), which has already been proved
on two-element frames of discernment . This is important as Pl-C classifies as
non-conflicting many cases which are considered to be positively conflicting by
the other measures of conflict (m(∅), distances, Liu’s cf , Martin’s approach,
Destercke-Burger’s approach, ...).

On the other hand, there are several properties of Harmanec’s degree if con-
flict C which seem surprising or even strange and which are significantly different
even from plausibility conflict Pl-C: e.g., decreasing of conflict in the direction to
categorical singletons (mω({ω}) = 1) and non-conflictnes of categorical single-
tons with all combinable BFs, maximally conflicting BFs to given Belu located
between −h(Bel) and the border of the simplex of BBFs, non-conflicting areas
according to conditions (iii) and (iv) from Theorem 1. This ’strange’ behaviour
is based on a completely different assumptions. Harmanec’s conflict does not
measure either difference or opposition of belief, but increasing/decreasing of
uncertainty when BFs are combined, thus this ’strange’ property of C-conflict is
sound from its point of view.

All of these properties should be discussed (accepted or explicitly rejected)
when a general axiomatic approach to conflicts between belief functions will
be formulated based on Destercke & Burger [12], Martin’s [23] and author’s
approaches [6, 9, 11].

When using C we have to be carefull about values (specially about values
around 1) as rounding of the values may produce relatively different results, see
Example 3.

Example 3. Let us suppose Bel1 : m1({ω1, ω2}) = 0.999999,m1(Ω5) =
0.000001 and Bel2 : m2({ω3}) = 0.45,m2({ω4}) = 0.25,m2({ω3, ω4, ω5}) =
0.30. Thus there is a high conflict C(Bel1, Bel2).
Let us round the inputs to 4 decimal places now. We obtainBel′1 : m′

1({ω1, ω2}) =
1.0000,m′

1(Ω5) = 0.0000.Bel′2 = Bel2. We have Pl-C(Bel′1, Bel′2)
.
= Pl-C(Bel1, Bel2)

but a completely different C(Bel′1, Bel′2) = 0 now!
A disadvantage of C is its strong relation to Dempster’s rule of combina-

tion, thus C is applicable only in the classic Dempster-Shafer approach with the
Dempster’s rule.

7 CONCLUSION

Two completely different approaches to conflict of belief functions were analysed
and compared. The common features were observed and the significant difference
in behaviour was explained. The warning for application of Harmanec’s conflict
was presented.

The theoretic analysis and comparison of the approaches coming from sig-
nificantly different assumptions move us to better understanding of nature of
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conflicts of belief functions in general. This can consequently serve as a basis for
better combination of conflicting belief functions in future, whenever conflicting
belief functions appear.
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